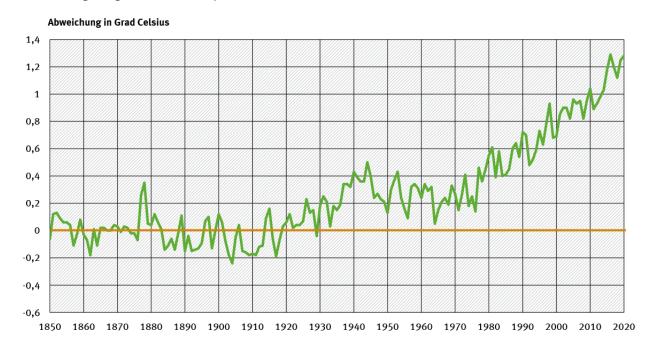


ERGEBNISPRÄSENTATION ZUM ENERGETISCHEN QUARTIERSKONZEPT STUTTGART-MÖHRINGEN

17.02.2023, Drees & Sommer, Capgemini

- **01** Ziel und Herangehensweise
- O2 Bestandsanalyse & Potenzialanalyse
- 03 Akteursanalyse
- 04 Szenarienentwicklung
- 05 Handlungskonzept Wärme & Strom
- 06 Handlungskonzept Kommunikation und Beteiligung



DER KLIMAWANDEL UND SEINE AUSWIRKUNGEN

- Durch das Verbrennen fossiler Energieträger wird CO₂ in großen Mengen freigesetzt.
- CO₂ und weitere Gase verursachen den Treibhauseffekt, der zu einem Anstieg der globalen Temperatur führt.
- Durch die steigenden Temperaturen schmelzen
 Gletscher ab und die weltweiten Meeresspiegel steigen an.
- Außerdem mehren sich Extremwetterereignisse wie Dürren und Hitzewellen, Starkregen und Überflutungen – auch bei uns!
- Auch ein zunehmendes Artensterben ist auf den menschengemachten Klimawandel zurückzuführen.

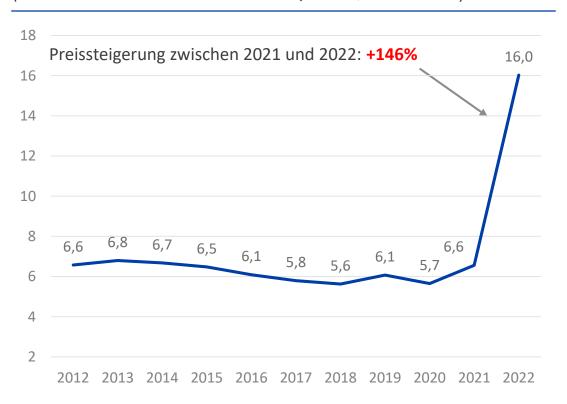
Während die **globale Lufttemperatur** bereits um über 1,2°C zugenommen hat, liegt die globale "**geschätzte** anthropogene Erwärmung" heute bei 1,0°C.

Abweichung der globalen Lufttemperatur vom Durchschnitt der Jahre 1850 bis 1900*

^{*} Die Nulllinie entspricht dem globalen Temperaturdurchschnitt der Jahre 1850 bis 1900

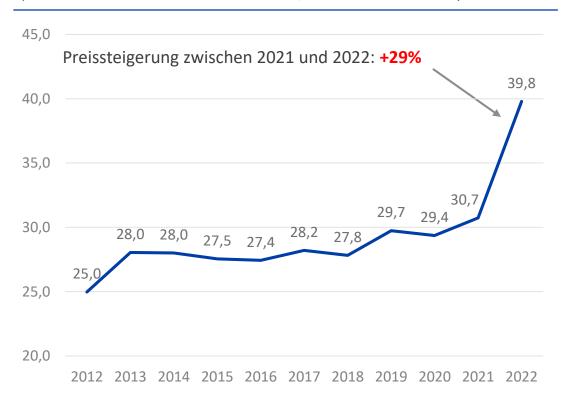
elle: Met Office Hadley Centre, Climate Reseach Unit; Modell HadCRUT.5.0.1.0

Quelle: Umweltbundesamt



ENERGIEPREISENTWICKLUNG IN DEUTSCHLAND

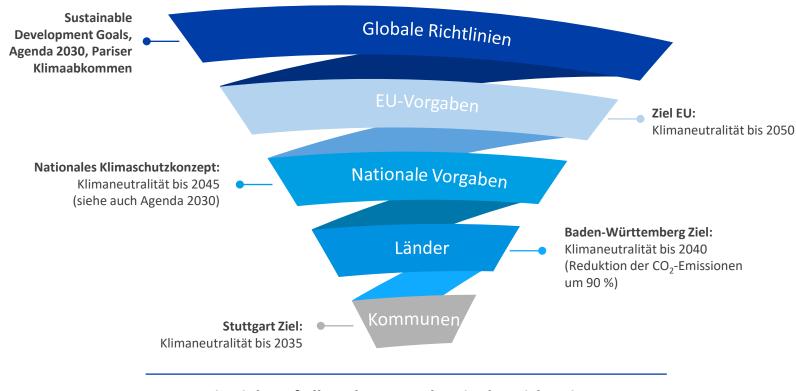
Angesichts der Preissteigerung von Gas und Strom wird der Aspekt der individuellen Kosteneinsparung noch relevanter


Durchschnittlicher Gaspreis 2012-2022 in ct/kWh

(Bei einem Verbrauch von 20.000 kWh/Jahr. Quelle: Verivox)

Durchschnittlicher Strompreis 2012-2022 in ct/kWh

(Bei einem Verbrauch von 4.000 kWh/Jahr. Quelle: Verivox)



/////

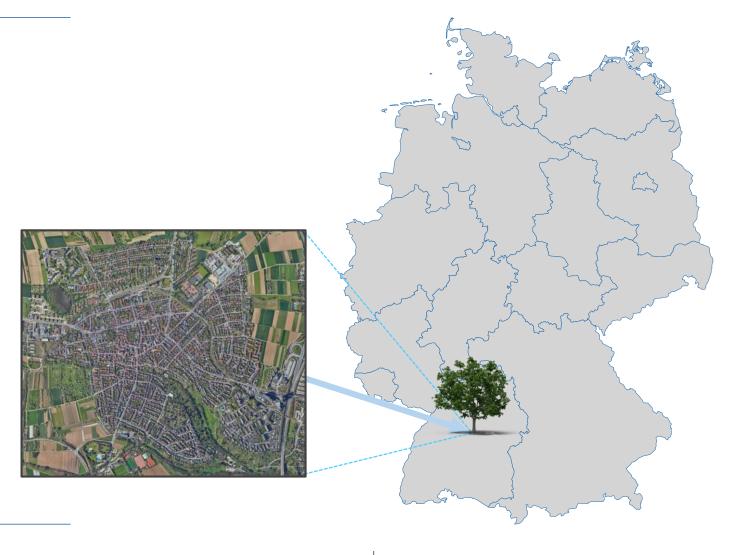
VORGABEN AUF NATIONALER UND INTERNATIONALER EBENE BEEINFLUSSEN DIE ARBEIT VON KOMMUNEN

Die Ziele auf allen Ebenen stehen in der Diskussion. Die Klimaneutralität soll bereits frühzeitiger erreicht werden.

→ Energetische Quartierskonzepte sind essentieller Bestandteil der Energieleitplanung Stuttgarts

TYPISCHES VORGEHEN IM RAHMEN EINES ENERGETISCHEN QUARTIERSKONZEPTES

Bestandsaufnahme

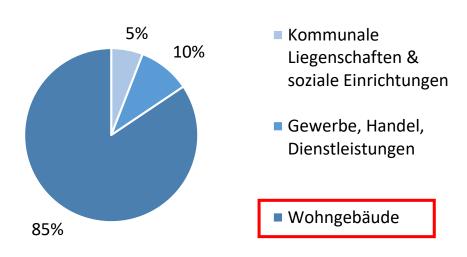

- Energie- und CO₂-Bilanz
- Gebäudestruktur (EFH, MFH, RH) inkl. Heizfläche und Baualtersklasse
- Energieversorgungssituation (Erdgas, Öl, Strom)
- Energieverbrauch (Strom, Wärme) der Gebäude
- Sanierungsstand der Gebäude

Szenarienentwicklung

- Modellierung von Maßnahmen (z.B. Sanierung)
- Betrachtung der Energie- und CO₂-Einsparungen
- Wirtschaftlichkeitsbetrachtung und lokale Wertschöpfung
- Berechnung Nahwärmenetz

Ergebnis der umfassenden Szenarienbetrachtungen

- Nachhaltigkeitsroadmap
- Konzept für weitere Einbindung
- Verstetigung des Prozesses



- 01 Ziel und Herangehensweise
- **02** Bestandsanalyse & Potenzialanalyse
- 03 Akteursanalyse
- 04 Szenarienentwicklung
- 05 Handlungskonzept Wärme & Strom
- 06 Handlungskonzept Kommunikation und Beteiligung

Von welchen Nutzungs- bzw. Eigentumsarten ist das Untersuchungsgebiet geprägt?

Anteil Gebäudenutzungsarten

Prägung des Untersuchungsgebietes durch Wohngebäude.

Gebäudeverteilung nach Eigentumsart

Private Einzelperson (Eigenbedarf)

■ Private Einzelperson (Mietobjekt)

■ Sonstige Institutionelle Eigentümer*innen

■ Städtisches Eigentum

■ Wohnbaugesellschaft (Vereinigte Filderbaugenossenschaft, LBG eG und Dinkelacker)

■ Wohneigentümer*innengemeinschaft

Mehr als die Hälfte der Gebäude sind im privaten Besitz.

19%

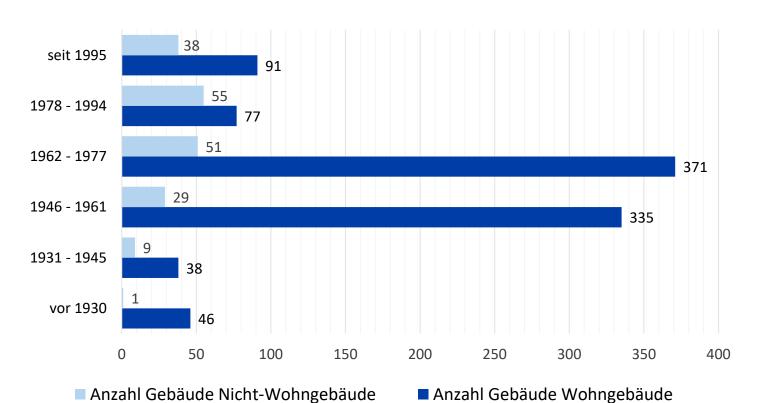
39%

19%

1%

3%

19%



BESTANDSANALYSE

Gebäudealter nach Baualtersklassen

Anzahl Gebäude im Untersuchungsgebiet

Alter Wohngebäudebestand.

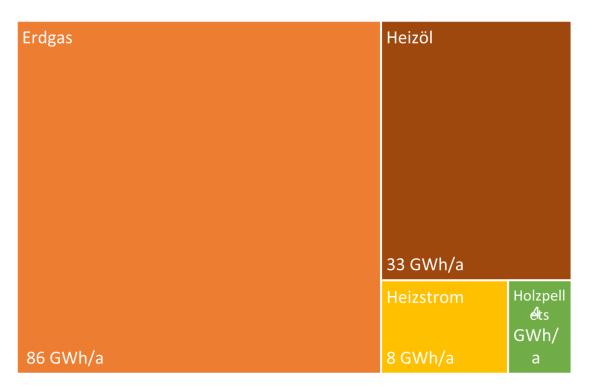
Die meisten Wohngebäude wurden vor 1977 erbaut.

Größter Zuwachs der Nicht-Wohngebäude zwischen 1978 und 1994.

Der alte Wohngebäudebestand spiegelt sich in einem **hohen spezifischen Wärmeverbrauch** wieder.

IDENTIFIZIERTE TYPISCHE WOHNGEBÄUDE

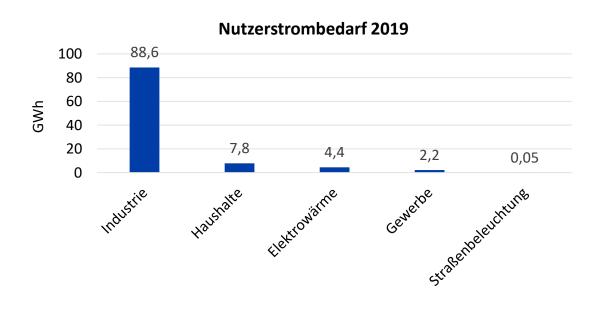
		2	3	4	5	
Nutzung	Wohnen, EFH	Wohnen, EFH	Wohnen, MFH	Wohnen, EFH	Wohnen, MFH	
Eigentum	privat	privat	Wohnbau-gesellschaft, WEG, privat	privat		
Baujahr	1902-25	1950-1960	1938, 50-61	1973-74	1968-73, 80er	
Typologie	1-2 Geschosse, Freistehend mit Sattel/Mansarddach	2 Geschosse, Reihenhaus/freistehen d mit Satteldach	2 Geschosse, Zeilen- bau mit Satteldach	1-2 Geschosse, Flachdach, Reihenhaus	3, 9 & 14 Geschosse, Zeilenbauten, Punkthochhäuser	
Anzahl Gebäude	33	58		132	120	
Energienetz	Gasanschluss	teils Gasanschluss	überwiegend Gasanschluss	überwiegend kein Gasanschluss	überwiegend kein Gasanschluss	
Lage	Sigmaringer Str., Salzäckerstr., Plieninger Str.	Glashütter Weg, Kohlbäckerstr	Prager Str., Spöcker Weg,	Widmaierstr., Salzäckerstr.	Widmaierstr., Salzäckerstr	
		September was			H L L	


BESTANDSANALYSE

Wärmeenergie- und Stromverbrauch Möhringen-Ost/Sternhäule

Wärmeenergiebedarf 2019

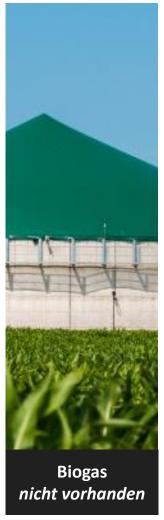
Gesamt: 132.000 MWh


CO₂-Emissionen: 33.000 tCO_{2eq}

Nutzerstrombedarf 2019

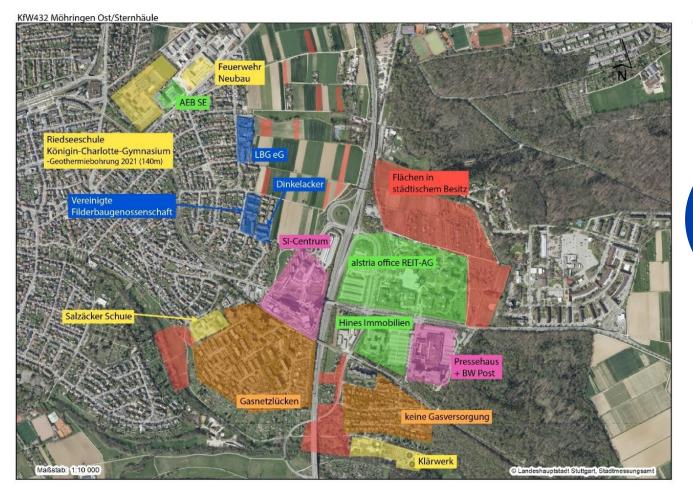
Gesamt: 100.000 MWh

CO₂-Emissionen: 40.000 t CO₂


POTENZIALANALYSE

Theoretische Potenziale Möhringen-Ost/Sternhäule

STUTTGART



- 01 Ziel und Herangehensweise
- O2 Bestandsanalyse & Potenzialanalyse
- **03** Akteursanalyse
- 04 Szenarienentwicklung
- 05 Handlungskonzept Wärme & Strom
- 06 Handlungskonzept Kommunikation und Beteiligung

/////

ZENTRALE AKTEURE IN MÖHRINGEN

AKTEURSEINBINDUNG UND BÜRGERBETEILIGUNG

Die Akteure sowie die Bürger*innen des Quartiers wurden im Rahmen dreier Online-Veranstaltungen in die Konzeptentwicklung eingebunden

Akteursinformationsveranstaltung (16. Dezember 2021)

Bürgerauftaktveranstaltung (24. Februar 2022)

Bürgerworkshop (24. Mai 2022)

Ziel:

Information der Akteure über das Projekt

Inhalte:

- Energetisches Quartierskonzept allgemein
- Förderprogramme für Unternehmen
- Aktueller Sanierungsstand

Ziel:

Information der Bürger*innen über das Projekt

Inhalte:

- Energetisches Quartierskonzept allgemein
- Förderprogramme für Bürger*innen
- Bezug der Teilnehmenden zum Thema

Ziel:

Aktive Mitgestaltung der Bürger*innen, Erarbeitung von Maßnahmen

Inhalte:

- Arbeitsgruppe
 Technische Maßnahmen
- Arbeitsgruppe Öffentlichkeitsarbeit
- Arbeitsgruppe Quartiersentwicklung

Die Veranstaltungen stellen die Initiierung des Partizipationsprozesses dar, der unter Berücksichtigung des Kommunikations- und Beteiligungskonzepts in der Umsetzungsphase fortgeführt und verstetigt werden soll.

- 01 Ziel und Herangehensweise
- O2 Bestandsanalyse & Potenzialanalyse
- 03 Akteursanalyse
- **04** Szenarienentwicklung
- 05 Handlungskonzept Wärme & Strom
- 06 Handlungskonzept Kommunikation und Beteiligung

SZENARIENENTWICKLUNG BIS 2035

Für die Umsetzung von Klimaschutzmaßnahmen wird ein TREND-, BASIS- und Zielszenario entwickelt

TREND-Szenario

- Keine Zielvorgabe; Fortschreibung aktueller Entwicklungen
- Berücksichtigung bereits geplanter Klimaschutzmaßnahmen nach KSK bzw. Aktionsplänen
- Berücksichtigung gesellschaftlicher, gesetzlicher und förderrechtlicher Rahmenbedingungen
- Dient als Referenz für das ZIEL-Szenario zur Bestimmung des Einflusses der Maßnahmen

BASIS-Szenario

- Berücksichtigung bereits geplanter Klimaschutzmaßnahmen
- Berücksichtigung gesellschaftlicher, gesetzlicher und förderrechtlicher Rahmenbedingungen
- Berücksichtigt identifizierten Potenziale
- Optimiert und kombiniert die Klimaschutzmaßnahme so miteinander, dass eine Klimaneutralität bis 2045 erreicht werden kann

ZIEL-Szenario

- Berücksichtigung bereits geplanter Klimaschutzmaßnahmen
- Berücksichtigung gesellschaftlicher, gesetzlicher und förderrechtlicher Rahmenbedingungen
- Berücksichtigt identifizierten Potenziale
- Optimiert und kombiniert die Klimaschutzmaßnahme so miteinander, dass eine Klimaneutralität bis 2035 erreicht werden kann

VERGLEICH SZENARIENENTWICKLUNG BIS 2035

Wärmebedarf und CO₂-Emissionen im Untersuchungsgebiet

TREND- Szenario	Haushalte	GHD	Kommunale Liegenschaften	BASIS- Szenario	Haushalte	GHD	Kommunale Liegenschaften	ZIEL- Szenario	Haushalte	GHD	Kommunale Liegenschaften
Sanierungs- rate		1,0 % p.a	1.	Sanierungs- rate		2,5 % p.a		Sanierungs- rate		5,0 % p.a	1.
Sanierungs- tiefe	100 kWh/m²a		Sanierungs- tiefe	80 kWh/m²a	70 k	Wh/m²a	Sanierungs- tiefe	65 kWh/m²a	50 k	kWh/m²a	

Wärmeenergiebedarf 2019: ca. 132.000 MWh/a

daraus resultierende CO₂-Emissionen: ca. 34.000 tCO₂/a

1. Energetische Gebäudesanierung

Restenergiebedarf: ca. **120.000** MWh/a Reduktion gegenüber 2019: ca. **10**%

Restenergiebedarf: ca. 100.000 MWh/a Reduktion gegenüber 2019: ca. 25%

Restenergiebedarf: ca. 60.000 MWh/a Reduktion gegenüber 2019: ca. 55 %

2. Energieträgerwechsel in sanierten Gebäuden

70% Wärmepumpen 30% Pelletkessel

Rest-CO₂: ca. **30.000 tCO₂/a**

Reduktion gegenüber 2019: ca. 15%

85% Wärmepumpen 15% Pelletkessel

Rest-CO₂: ca. **20.000 tCO₂/a**

Reduktion gegenüber 2019: ca. 40%

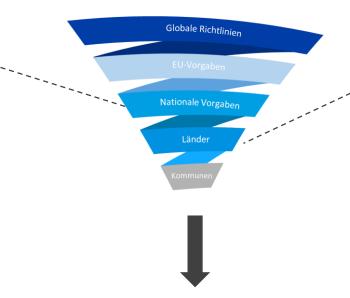
100% Wärmepumpen 0% Pelletkessel

Rest-CO₂: ca. 2.000 tCO₂/a

Reduktion gegenüber 2019: ca. 95%

- 01 Ziel und Herangehensweise
- O2 Bestandsanalyse & Potenzialanalyse
- 03 Akteursanalyse
- 04 Szenarienentwicklung
- **05** Handlungskonzept Wärme & Strom
- 06 Handlungskonzept Kommunikation und Beteiligung

WARUM MUSS SICH ETWAS ÄNDERN?


Gebäudeenergiegesetz (GEG)

§72 Heizkessel¹ mit flüssigen oder gasförmigen Brennstoffen

- welche vor dem 1. Januar 1991 eingebaut worden sind, müssen ausgetauscht werden
- welche nach dem 1. Januar 1991 eingebaut worden sind, müssen nach spätestens 30 Jahren ausgetauscht werden

Heizkessel mit Heizöl oder mit festem fossilem Brennstoff dürfen ab 2026 nicht mehr eingebaut werden

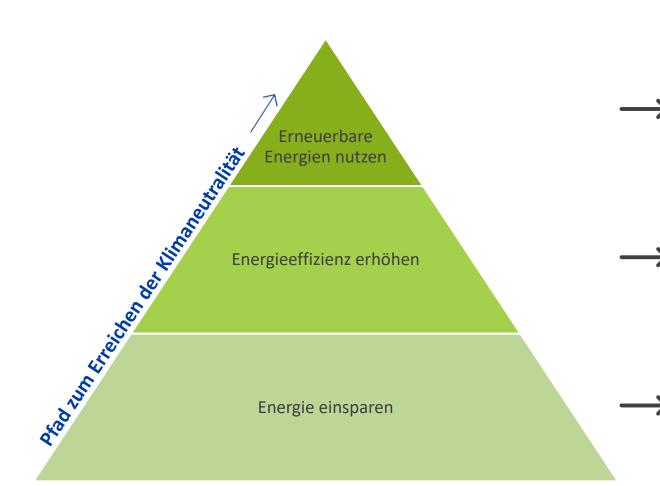
¹ nicht anzuwenden auf Niedertemperatur-Heizkessel sowie heizungstechnische Anlagen, deren Nennleistung weniger als 4 Kilowatt oder mehr als 400 Kilowatt beträgt.

Strengere gesetzliche Regelungen führen dazu, dass jeder in den kommenden Jahren sein Heizungssystem (Heizkessel mit flüssigen oder gasförmigen Brennstoffen) anpassen muss.

Frage: Wie müssen und wollen wir zukünftig heizen?

Erneuerbare-Wärme-Gesetz (EWärmeG) Baden-Württemberg

§4 Nach Austausch oder nachträglichen Einbau einer Heizanlage muss entweder


- mindestens 15 % des jährlichen Energiebedarfs aus erneuerbaren Energien gedeckt werden (z.B. Solarthermie), oder
- der Wärmeenergiebedarf um mindestens
 15% reduziert werden

ENERGETISCHE SANIERUNG 3 Stufen zur Klimaneutralität

Wechselwirkungen:

Energie- und CO₂-Einsparung

Förderpotenzial

Aufwand

Einzelmaßnahmen:

- Austausch Bestandskessel
- Einbau Pelletkessel oder Hybridsysteme mit Solarthermie

Maßnahmenpakete:

- Austausch Bestandskessel
- Einbau Wärmepumpensystem (Luft/Wasser, Sole/Wasser o.Ä.)
- **Anschluss Nahwärmenetz**

Einzelmaßnahmen und Maßnahmen im Paket:

- Dämmung von Verteilleitungen
- Hydraulischer Abgleich
- Austausch bestehender Heizkörper gegen Niedertemperaturheizkörper (Absenkung von Vorlauftemperaturen)

Einzelmaßnahmen:

- Austausch Fenster
- Dämmung oberste Geschossdecke
- Dämmung Kellerdecke
- Außenwanddämmung

Maßnahmenpakete:

- Umfangreiche Maßnahmen zur Ertüchtigung der Gebäudehülle (Fassade, Fenster, Dach)
- Austausch Heizkörper

/////

WELCHE MÖGLICHKEITEN ZUM HEIZEN GIBT ES? WAS IST ZU BEACHTEN?

Fossile Brennstoffe			Regenerative Brennstoffe	Strombasiert		
Heizöl	Erdgas	Flüssiges Gas	Biomasse (z.B. Pellets)	Luft-Wasser- Wärmepumpe	Wasser-Wasser- Wärmepumpe	
KlimaschädlichGesetzlich verboten	Kaltbrunn	KlimaschädlichNischenanwendungNoch nicht verboten,	Für alle TemperaturanforderungenPlatz im Haus notwendig	 Keine CO₂-Emissionen mit Ökostrom Günstige Anschaffungskosten 	 Keine CO₂-Emissionen mit Ökostrom Permanent hohe Effizienz und 	
	Noch nicht verboten, aber Regelungen werden strikter	aber Regelungen werden strikter	→ CO ₂ -Emissionen	 Außentemperaturen beeinflussen die Effizienz Mehr Platzbedarf für Außeneinheit Risiko störender Geräuschkulisse im Ort Vergleichsweise hohe Betriebskosten Kompatibilität mit individueller Vorlauftemperatur 	 Geringe Betriebskosten Keine Schallemissionen nach Außen Vergleichsweise Kostenintensive Anschaffung Kompatibilität mit individueller Vorlauftemperatur 	

///// WÄRMESTRATEGIE

Einteilung in Handlungsschritte

III. IV. Wärmeverbräuche Vorlauftemperaturen Wärmeguellen Wärmequellen reduzieren absenken identifizieren integrieren Energetische Erneuerbare Optimierte Wärmeverbräuche Wärmeversorgung **Status Quo** Status Quo Energiequellen Sanierung Wärmeversorgung Zentrale Quartierslösungen schaffen Abwärme** Wohngebäude Möglich? Dezentrale Lösungen finden ÖΙ NUTZERGRUPPEN Öffentliche/ Geothermie Kommunale Gebäude Flüssiggas Grundwasser GHD Kohle Abwasser Strom Mischnutzung (Nachtspeicherh.) Luft Erdgas Power-2-Heat **Photovoltaik** Optimieren und Fortführen Biomasse Bestehende emissionsfreie/-arme Versorgungslösungen optimieren *dekarbonisierte Fernwärme Optimieren und Fortführen Strom und fortführen **unvermeidbare gewerbliche/industrielle Abwärme (Wärmepumpen)

Der Nutzerstrom wird sich durch Effizienz etwas reduzieren, jedoch steigt der Technikstrom für den Betrieb von Wärmepumpen

Schritt 1:

Energetische Sanierung der Bestandsgebäude, um Energie einzusparen und Vorlauftemperaturen absenken zu können

Schritt 2.A:

Anschluss an ein Niedertemperaturnetz, sofern ein Wärmenetzanschluss möglich ist

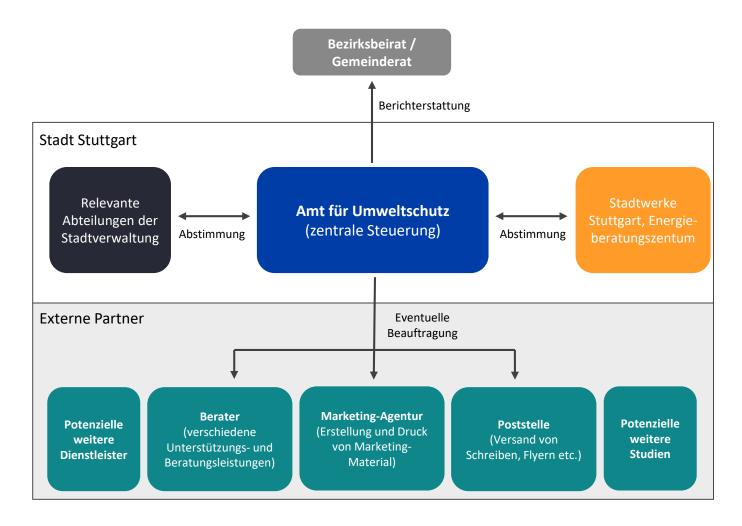
Schritt 2.B:

Umrüstung der bestehenden Heizungstechnik hinzu einer Wärmepumpe

Schritt 3:

Erzeugung von lokalem PV-Strom und Eigenverbrauch zur Wärmeerzeugung

- 01 Ziel und Herangehensweise
- O2 Bestandsanalyse & Potenzialanalyse
- 03 Akteursanalyse
- 04 Szenarienentwicklung
- 05 Handlungskonzept Wärme & Strom
- **06** Handlungskonzept Kommunikation und Beteiligung



MÖGLICHE KOMMUNIKATIONSSTRUKTUR

Im **Zentrum** der Kommunikationsstruktur steht **das Amt für Umweltschutz (AfU)** der Landeshauptstadt Stuttgart, welches für die zentrale Steuerung des Kommunikationsprozesses (s. u.) verantwortlich ist.

Das AfU:

- Plant und organisiert den Kommunikationsprozess,
- Arbeitet die Kommunikation inhaltlich aus,
- Nimmt dafür bei Bedarf Beratungsleistungen Externer in Anspruch,
- Hält und pflegt Kontaktdaten und Verteiler relevanter Akteure aus dem Quartier,
- Beauftragt Dienstleister mit der Gestaltung, dem Druck und dem Versand von Marketingmaterialien und
- Beauftragt Dienstleister mit der Organisation und Durchführung von Veranstaltungen.
- Abstimmung mit weiteren relevanten Abteilungen der Stadtverwaltung, z. B. Amt für Stadtplanung und Wohnen

MONITORING UND ERFOLGSKONTROLLE

Durch einen fortlaufenden Monitoringprozess werden Einzelmaßnahmen auf ihre Wirksamkeit überprüft.

Um den Fortschritt quantitativ bewerten zu können, könnte ein System von Zielkennzahlen entwickelt werden, das als Grundlage für die Bewertung der Maßnahmen dient. Folgende Kennzahlen sind in den einzelnen Bereichen denkbar:

Zielkennzahlen Wärme

- Sanierungsrate
- Sanierungstiefe
- Alle Gebäude sollten mit einer Heizanlage basierend auf regenerativen Energien umgestellt werden.

Zielkennzahlen Strom

- Jede Dachsanierung sollte nach Möglichkeit mit dem Bau einer PV-Anlage kombiniert werden.
- Potenziell geeignete Freiflächen sollte mit PV-Anlagen ausgestattet werden.

Zielkennzahlen Mobilität

- Anzahl gemeldeter PKWs sowie der Anteil an E-Autos.
- Anzahl an Ladepunkten im Stadtteil.
- Weitere Kennzahlen für Fahrrad- und Fußverkehr.

- Anzahl an Teilnehmenden an Informationsveranstaltungen, Bürgerworkshops oder Mitmachaktionen.
- Weitere Indikatoren die den Informationsstand über das Projekt abbilden.

